Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 24(5): e202200521, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36354312

RESUMO

Reverse transcriptases are DNA polymerases that can use RNA as a template for DNA synthesis. They thus catalyze the reverse of transcription. Although discovered in 1970, reverse transcriptases are still of great interest and are constantly being further developed for numerous modern research approaches. They are frequently used in biotechnological and molecular diagnostic applications. In this review, we describe the discovery of these fascinating enzymes and summarize research results and applications ranging from molecular cloning, direct virus detection, and modern sequencing methods to xenobiology.


Assuntos
DNA Polimerase Dirigida por DNA , DNA Polimerase Dirigida por RNA , DNA Polimerase Dirigida por RNA/genética , RNA , Clonagem Molecular , RNA Polimerases Dirigidas por DNA
2.
J Am Chem Soc ; 144(23): 10556-10569, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35666775

RESUMO

DNA polymerases can process a wide variety of structurally diverse nucleotide substrates, but the molecular basis by which the analogs are processed is not completely understood. Here, we demonstrate the utility of environment-sensitive heterocycle-modified fluorescent nucleotide substrates in probing the incorporation mechanism of DNA polymerases in real time and at the atomic level. The nucleotide analogs containing a selenophene, benzofuran, or benzothiophene moiety at the C5 position of 2'-deoxyuridine are incorporated into oligonucleotides (ONs) with varying efficiency, which depends on the size of the heterocycle modification and the DNA polymerase sequence family used. KlenTaq (A family DNA polymerase) is sensitive to the size of the modification as it incorporates only one heterobicycle-modified nucleotide into the growing polymer, whereas it efficiently incorporates the selenophene-modified nucleotide analog at multiple positions. Notably, in the single nucleotide incorporation assay, irrespective of the heterocycle size, it exclusively adds a single nucleotide at the 3'-end of a primer, which enabled devising a simple two-step site-specific ON labeling technique. KOD and Vent(exo-) DNA polymerases, belonging to the B family, tolerate all the three modified nucleotides and produce ONs with multiple labels. Importantly, the benzofuran-modified nucleotide (BFdUTP) serves as an excellent reporter by providing real-time fluorescence readouts to monitor enzyme activity and estimate the binding events in the catalytic cycle. Further, a direct comparison of the incorporation profiles, fluorescence data, and crystal structure of a ternary complex of KlenTaq DNA polymerase with BFdUTP poised for catalysis provides a detailed understanding of the mechanism of incorporation of heterocycle-modified nucleotides.


Assuntos
Benzofuranos , Nucleotídeos , DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Desoxiuridina , Nucleotídeos/química , Oligonucleotídeos , Tiofenos
3.
Chembiochem ; 22(21): 3060-3066, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34486208

RESUMO

With increasing temperature, nucleobases in DNA become increasingly damaged by hydrolysis of exocyclic amines. The most prominent damage includes the conversion of cytosine to uracil and adenine to hypoxanthine. These damages are mutagenic and put the integrity of the genome at risk if not repaired appropriately. Several archaea live at elevated temperatures and thus, are exposed to a higher risk of deamination. Earlier studies have shown that DNA polymerases of archaea have the property of sensing deaminated nucleobases in the DNA template and thereby stalling the DNA synthesis during DNA replication providing another layer of DNA damage recognition and repair. However, the structural basis of uracil and hypoxanthine sensing by archaeal B-family DNA polymerases is sparse. Here we report on three new crystal structures of the archaeal B-family DNA polymerase from Thermococcus kodakarensis (KOD) DNA polymerase in complex with primer and template strands that have extended single stranded DNA template 5'-overhangs. These overhangs contain either the canonical nucleobases as well as uracil or hypoxanthine, respectively, and provide unprecedented structural insights into their recognition by archaeal B-family DNA polymerases.


Assuntos
DNA Arqueal/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Replicação do DNA , DNA Arqueal/análise , DNA Polimerase Dirigida por DNA/química , Desaminação , Modelos Moleculares , Conformação de Ácido Nucleico , Thermococcus/enzimologia
4.
J Cell Biol ; 219(12)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33119040

RESUMO

Control of integrin activity is vital during development and tissue homeostasis, while derailment of integrin function contributes to pathophysiological processes. Phosphorylation of a conserved threonine motif (T788/T789) in the integrin ß cytoplasmic domain increases integrin activity. Here, we report that T788/T789 functions as a phospho-switch, which determines the association with either talin and kindlin-2, the major integrin activators, or filaminA, an integrin activity suppressor. A genetic screen identifies the phosphatase PPM1F as the critical enzyme, which selectively and directly dephosphorylates the T788/T789 motif. PPM1F-deficient cell lines show constitutive integrin phosphorylation, exaggerated talin binding, increased integrin activity, and enhanced cell adhesion. These gain-of-function phenotypes are reverted by reexpression of active PPM1F, but not a phosphatase-dead mutant. Disruption of the ppm1f gene in mice results in early embryonic death at day E10.5. Together, PPM1F controls the T788/T789 phospho-switch in the integrin ß1 cytoplasmic tail and constitutes a novel target to modulate integrin activity.


Assuntos
Integrina beta1/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular , Filaminas/genética , Filaminas/metabolismo , Humanos , Integrina beta1/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosfoproteínas Fosfatases/genética
5.
Chemistry ; 26(16): 3446-3463, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31544987

RESUMO

Unnatural base pairs (UBPs) greatly increase the diversity of DNA and RNA, furthering their broad range of molecular biological and biotechnological approaches. Different candidates have been developed whereby alternative hydrogen-bonding patterns and hydrophobic and packing interactions have turned out to be the most promising base-pairing concepts to date. The key in many applications is the highly efficient and selective acceptance of artificial base pairs by DNA polymerases, which enables amplification of the modified DNA. In this Review, computational as well as experimental studies that were performed to characterize the pairing behavior of UBPs in free duplex DNA or bound to the active site of KlenTaq DNA polymerase are highlighted. The structural studies, on the one hand, elucidate how base pairs lacking hydrogen bonds are accepted by these enzymes and, on the other hand, highlight the influence of one or several consecutive UBPs on the structure of a DNA double helix. Understanding these concepts facilitates optimization of future UBPs for the manifold fields of applications.


Assuntos
DNA Polimerase Dirigida por DNA/química , RNA/química , Pareamento de Bases , DNA Polimerase Dirigida por DNA/metabolismo , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Nucleosídeos/química
6.
PLoS One ; 12(12): e0188005, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29211756

RESUMO

Archaeal B-family polymerases drive biotechnology by accepting a wide substrate range of chemically modified nucleotides. By now no structural data for archaeal B-family DNA polymerases in a closed, ternary complex are available, which would be the basis for developing next generation nucleotides. We present the ternary crystal structures of KOD and 9°N DNA polymerases complexed with DNA and the incoming dATP. The structures reveal a third metal ion in the active site, which was so far only observed for the eukaryotic B-family DNA polymerase δ and no other B-family DNA polymerase. The structures reveal a wide inner channel and numerous interactions with the template strand that provide space for modifications within the enzyme and may account for the high processivity, respectively. The crystal structures provide insights into the superiority over other DNA polymerases concerning the acceptance of modified nucleotides.


Assuntos
Archaea/enzimologia , DNA Polimerase Dirigida por DNA/química , Domínio Catalítico , Cristalografia por Raios X , DNA Arqueal/química , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica
7.
Angew Chem Int Ed Engl ; 56(39): 12000-12003, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28594080

RESUMO

Hydrophobic artificial nucleobase pairs without the ability to pair through hydrogen bonds are promising candidates to expand the genetic alphabet. The most successful nucleobase surrogates show little similarity to each other and their natural counterparts. It is thus puzzling how these unnatural molecules are processed by DNA polymerases that have evolved to efficiently work with the natural building blocks. Here, we report structural insight into the insertion of one of the most promising hydrophobic unnatural base pairs, the dDs-dPx pair, into a DNA strand by a DNA polymerase. We solved a crystal structure of KlenTaq DNA polymerase with a modified template/primer duplex bound to the unnatural triphosphate. The ternary complex shows that the artificial pair adopts a planar structure just like a natural nucleobase pair, and identifies features that might hint at the mechanisms accounting for the lower incorporation efficiency observed when processing the unnatural substrates.


Assuntos
Pareamento de Bases , DNA Polimerase Dirigida por DNA/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Conformação de Ácido Nucleico
8.
Chemistry ; 23(9): 2109-2118, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-27901305

RESUMO

Efficient incorporation of modified nucleotides by DNA polymerases is essential for many cutting-edge biomolecular technologies. The present study compares the acceptance of either alkene- or alkyne-modified nucleotides by KlenTaq DNA polymerase and provides structural insights into how 7-deaza-adenosine and deoxyuridine with attached alkene-modifications are incorporated into the growing DNA strand. Thereby, we identified modified nucleotides that prove to be superior substrates for KlenTaq DNA polymerase compared with their natural analogues. The knowledge can be used to guide future design of functionalized nucleotide building blocks.


Assuntos
Alcenos/química , Alcinos/química , DNA Polimerase Dirigida por DNA/metabolismo , Nucleotídeos/metabolismo , Biocatálise , Desoxiuridina/síntese química , Desoxiuridina/química , Desoxiuridina/metabolismo , Eletroforese em Gel de Poliacrilamida , Técnicas de Amplificação de Ácido Nucleico , Nucleotídeos/síntese química , Nucleotídeos/química , Tubercidina/síntese química , Tubercidina/química , Tubercidina/metabolismo
9.
J Am Chem Soc ; 135(49): 18637-43, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24283923

RESUMO

The genetic alphabet is composed of two base pairs, and the development of a third, unnatural base pair would increase the genetic and chemical potential of DNA. d5SICS-dNaM is one of the most efficiently replicated unnatural base pairs identified to date, but its pairing is mediated by only hydrophobic and packing forces, and in free duplex DNA it forms a cross-strand intercalated structure that makes its efficient replication difficult to understand. Recent studies of the KlenTaq DNA polymerase revealed that the insertion of d5SICSTP opposite dNaM proceeds via a mutually induced-fit mechanism, where the presence of the triphosphate induces the polymerase to form the catalytically competent closed structure, which in turn induces the pairing nucleotides of the developing unnatural base pair to adopt a planar Watson-Crick-like structure. To understand the remaining steps of replication, we now report the characterization of the prechemistry complexes corresponding to the insertion of dNaMTP opposite d5SICS, as well as multiple postchemistry complexes in which the already formed unnatural base pair is positioned at the postinsertion site. Unlike with the insertion of d5SICSTP opposite dNaM, addition of dNaMTP does not fully induce the formation of the catalytically competent closed state. The data also reveal that once synthesized and translocated to the postinsertion position, the unnatural nucleobases again intercalate. Two modes of intercalation are observed, depending on the nature of the flanking nucleotides, and are each stabilized by different interactions with the polymerase, and each appear to reduce the affinity with which the next correct triphosphate binds. Thus, continued primer extension is limited by deintercalation and rearrangements with the polymerase active site that are required to populate the catalytically active, triphosphate bound conformation.


Assuntos
Replicação do DNA , Ligação de Hidrogênio , Sequência de Bases , Primers do DNA , Modelos Moleculares , Taq Polimerase/metabolismo
10.
Chembiochem ; 14(9): 1058-62, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23733496

RESUMO

Replicate it: Structures of KOD and 9°N DNA polymerases, two enzymes that are widely used to replicate DNA with highly modified nucleotides, were solved at high resolution in complex with primer/template duplex. The data elucidate substrate interaction of the two enzymes and pave the way for further optimisation of the enzymes and substrates.


Assuntos
Primers do DNA/química , DNA Polimerase Dirigida por DNA/química , Sítios de Ligação , Primers do DNA/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Estrutura Terciária de Proteína , Thermococcus/enzimologia
11.
Nat Chem Biol ; 8(7): 612-4, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22660438

RESUMO

Many candidate unnatural DNA base pairs have been developed, but some of the best-replicated pairs adopt intercalated structures in free DNA that are difficult to reconcile with known mechanisms of polymerase recognition. Here we present crystal structures of KlenTaq DNA polymerase at different stages of replication for one such pair, dNaM-d5SICS, and show that efficient replication results from the polymerase itself, inducing the required natural-like structure.


Assuntos
Pareamento de Bases , DNA/química , Conformação de Ácido Nucleico , Taq Polimerase/metabolismo , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...